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Einstein Algebras and General Relativity 

M i c h a e l  H e l l e r  1 
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A purely algebraic structure called an Einstein algebra is defined in such a way 
that every spacetime satisfying Einstein's equations is an Einstein algebra but not 
vice versa. The Gelfand representation of Einstein algebras is defined, and two 
of its subrepresentations are discussed. One of them is equivalent to the global 
formulation of the standard theory of general relativity; the other one leads to a 
more general theory of gravitation which, in particular, includes so-called regular 
singularities. In order to include other types of singularities one must change to 
sheaves of Einstein algebras. They are defined and briefly discussed. As a test of 
the proposed method, the sheaf of Einstein algebras corresponding to the space- 
time of a straight cosmic string with quasiregular singularity is constructed. 

INTRODUCTION 

The idea of presenting general relativity as a special case of a more 
general purely algebraic structure belongs to Geroch (1972). He defined an 
Einstein algebra as consisting of a commutative ring with a subring iso- 
morphic to real numbers, and a metric such that the contraction property is 
satisfied and the Ricci tensor vanishes (or, alternatively, such that Einstein's 
equations with suitable sources are satisfied). Geroch did not go far beyond 
showing that the collection of all real-valued functions on a spacetime mani- 
fold satisfying Einstein's equations is an Einstein algebra, and making a few 
comments concerning the role of spacetime events in general relativity and 
quantum theories; he also pointed out how experimental predictions could 
eventually be derived from the formalism of Einstein algebras. 

In the present work, after giving necessary algebraic preliminaries (Sec- 
tion 1), mainly to establish notation and conventions, the Geroch program is 
developed (Section 2). Stress is put on functional representations of Einstein 
algebras. Two such representations are discussed in some detail. One of them 
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is equivalent to the global formulation of orthodox general relativity; the 
other one is its generalization. In particular some mild types of singularities 
become intrinsic elements of the new theory. It turns out that in order to 
include other types of singularities (also curvature singularities) into the 
theoretical scheme, one must change from Einstein algebras to sheaves of 
Einstein algebras (Section 3). 

The method is tested on the example of spacetime due to a straight 
cosmic string with quasiregular singularity. The sheaf of Einstein algebras 
fully modeling such a configuration is constructed (Section 4). Finally, in 
Section 5, some comments are given with emphasis on the gravity quantiza- 
tion problem and observational possibilities of algebraic theories of 
gravitation. 

1. A L G E B R A I C  P R E L I M I N A R I E S  

The basic object of our study is a linear algebra, i.e., a commutative 
ring C, with respect to two internal operations: addition and multiplication, 
together with one external operation ~ • C-~ C defined by (p, x)~--~px, 
pc  ~, x s  C, such that the set C is a linear space with respect to the internal 
addition and the external multiplication. 2 

A module W over the ring C (a C-module) is called a linear-C-module. 
Every linear C-module W with identity is an R-module. Indeed, if p s ~, and 
1 is the identity of C, one may identify p �9 1 with p, which gives ~ c C, and 
consequently the multiplication p .  v, v ~ W, is also defined. 

In the following, only linear algebras and modules are considered; the 
word "linear" is often omitted. 

Let C be an algebra. Any linear mapping V: C ~ C such that 

v ( a ~ )  = v ( a ) ~  + a v (~ )  

for any a, f le C, is said to be a C-vector (or simply a vector). The set of all 
C-vectors is denoted by 2~(C). To denote the value V(a) of a C-vector at 
a e C we also use the symbol 8va, and we shall say that 3~a is a derivative 
of a in the direction V. It can be easily shown that Y'(C) is a Lie algebra 
with respect to the commutator [X, Y] = X  o Y -  Y o X, X, Ye~Y(C). 

The set of C-linear mappings (or homomorphisms) of the C-module 
~r(C) into C defines the dual module Y'(C)*; we write 

~r(c), = y~(~(c ) ;  c) 

Every C-linear mapping W e f ( C ) *  is called a C-covector. 

2A standard reference for this section is Sikorski (1972), Chapter 5. 
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Let W 1 , . . . ,  W, ,  W be C-modules. Any On-linear mapping 

T: ~/1, �9 �9 �9 , ~/ ,  --+ W 

is called a C-n-tensor (or tensor, for brevity). The set of  all such tensors is 
denoted by Y c ( W ~ , . . . ,  Wn; W).  If  ~ / =  C, the tensor is called the scalar 
tensor. The C-module ~q~o(W; C) of  C-linear mappings L:  W ~ C is called 
the dual of  ~ and is denoted by W*. With the help of  W and W* one can 
construct C-n-tensors of  various valences (by defining corresponding tensor 
products). 

Let W be a C-module and g: W x W ~ C a 2-C-linear mapping, and let 
us choose any vector V~ W. The formula 

V~(W)=g(V, W) 

for every W~ W, defines uniquely a covector VgeW *. We define a C-linear 
mapping 7 by 

D(V)](W)=g(V, W) 

g is said to be a nondegenerate mapping if for every Ue W* there exists 
exactly one Ve W such that U= 7(V).  In such a case, there exists a one-to- 
one mapping of the C-module W onto the C-module W*. g is said to be 
symmetric if g( V, W ) =  g( W, V), for every V, We ~/. A nondegenerate and 
symmetric 2-C-linear mapping g: W • ~ / -~  C is called a scalar product (in 
the module ~/). 

One can show that if there exists a scalar product g in ~/, then W is 
reflexive, and g*(X, Y):=g(7-a(X), 7-1(Y)), for X, YEW*, is a scalar 
product in W*. 

Let us suppose that W has a basis ( Wo, WI . . . . .  Win) and g is a particu- 
lar scalar product in W. We shall say that this basis, or this scalar product, 
is pseudoorthonormal (or Lorentz) if 

with 

g ( ~ ,  w;)  = ~o 

i if i~ j  
~/0.= - if i = j = 0  

if i=j~O 

where 0, - l ,  and 1 are to be understood as constant functions belonging to 
C. A C-module in which there exists such a basis will be said a pseudo- 
orthonormal or Lorentz C-module. 

The covariant derivative in the C-differential module W is any mapping 

Vs~c(~'(C); Su(W; W)) 
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satisfying the condition 

Vv(aW)=~va �9 W+a VvW 

where VeYC(C), WeW, aeC, and Vv: W ~ W is a function assigning VvW 
(called the directional derivative of W in the direction V) to every We W. It 
can be demonstrated that for any scalar product G in the C-module Y'(C) 
there exists exactly one symmetric covariant derivative V in Y'(C) such that 
VG=O. 

Let W be a C-module, and V a covariant derivative in W. By definition, 
V is a mapping which assigns to every XeY'(C) another mapping, namely 

V: W--, LZ~(W; W) 

In general, this transformation does not preserve Lie brackets, i.e., 

R x r -  [Vx, Vr] - Vfx, r] 50  

for X, Y e f ( C ) .  One can see that Rxr: W ~ W  is a mapping such that 
W~--~RxyW, for every WeW. 

It can be shown that RxrW, viewed as a function of three variables-- 
X, Ye~?(C), WeW--is a tensor, i.e., Rxre~c(W; W). 

The mapping which to any two vectors X, Ye~?(C) assigns the mapping 
Rxr: W ~ W is denoted by R; therefore 

Re.~c(~:(C), ~(C) ;  ~c(W, W)) 

and R is called the Riemann tensor or curvature tensor of  the covariant 
derivative V. 

Let us consider a fixed We W. The mapping which to any two elements 
X, Ye:Y(C) assigns RxrWeW is denoted by RW; therefore 

RWe~c(:Y(C), f ( C ) ;  W) 

The multilinear mapping 

~: ~ ( C ) x ~ ( C ) x W x w * ~ C  

defined by 

R(X, Y, W, U)= U(RxrW), X, Ye~'(C), WeW, UeW* 

is called the scalar curvature (or Riemann) tensor. It can be shown that if 
the module W is reflexive, i.e., if W** = W, the scalar curvature tensor/)  
uniquely determines the curvature tensor R. For the purposes of the present 
paper it would be enough to introduce the scalar curvature tensor; notice, 
however, that the above machinery is worthwhile to consider since it suggests 
further generalizations of the concept of Einstein algebras. 
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Let G denote a certain fixed two-covariant symmetric tensor on the C- 
module W, i.e., G~54'c(~/, W; C). We define the C-linear mapping 

GR: X(C) x X ( C ) x W x W ~ C  

GR(X, Y, U, W)= G(RxrU, W) 

for X, YsX(C) ,  U, WeW. The tensor GReY'c(X(C), X(C), W, W; C) is 
called the covariant curvature tensor. It is uniquely determined by the covari- 
ant derivative V and the tensor G. In the following we shall assume that G 
is a metric tensor such that VG = 0. 

Let W be a C-module with a basis W~ . . . . .  Wn, and W* the dual C- 
module with the dual basis W I , . . . ,  W n. Let us also consider a C-linear 
mapping L: W ---, W. The trace of  L, tr L, is defined to be 

tr L = Wi(L I'Vi) e C, i = 1 , . . . ,  n 

This definition is independent of the choice of a particular basis. From this 
definition it follows that 

treAec(Sfc(W; W); C) 

Let us consider a C-module W having a basis (V1 . . . .  , Vn); in such a 
case, the trace t r L e C  of  any tensor L e A ~  is determined, 
treS~ W) ;  C). Let us also assume that V is a covariant derivative 
in W and that W = X(C). If  R is the curvature tensor of V, the tensor 

Ric6~ec(X(C), ~ ( C ) ;  C) 

defined by Ric(Y, Z) =trx(RxyZ), Y, Z6X(C) ,  for anyX6X(C) ,  is said to 
be the Ricci tensor. 

RxyZ, with Y and Z fixed, should be thought of  as a linear function of  
the variable X transforming the module X(C) into itself. Ric(Y, Z )  is the 
trace of  this function. 

2. EINSTEIN ALGEBRAS AND THEIR REPRESENTATIONS 

By an Einstein algebra d we mean a linear algebra C satisfying the 
following conditions :3 

(i) The C-module W = X(C) of all C-vectors is the Lorentz C-module. 
(ii) There exists a covariant derivative V in W such that Vg = 0, where 

g is the Lorentz scalar product in ~x/. 

3Alternatively, one could assume C to be a commutative ring having a subring ~ isomorphic 
with the real numbers such that the identity of N is the identity of C (Geroch, 1972). 
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(iii) Ric = 0. 
is an extended Einstein algebra if, instead of (iii), the following condi- 

tion is satisfied: 
(iii') Ein + Ag = T, where Ein is the Einstein tensor, A is the cosmo- 

logical constant, and T is a suitable energy-momentum tensor. 
Every spacetime manifold satisfying Einstein's equations is an 

(extended) Einstein algebra, but not vice versa. Einstein algebras are not 
only purely algebraic structures, but they are also generalizations of the 
general theory of relativity. 

Let d *  be the dual of d as a vector space over ~.  By d ^ ~ d *  
we denote the "algebraic dual" of d ,  i.e., the set of all homomorphisms 
{~b: d ~ K}. There is a bijection between d A and Spec d ,  the set of all 
strictly maximal ideals in d .  A representation of d ,  p: d ---, ~ ,  given by 
p(x)(4) ) =  ~b (x), x e d ,  d?ed ^, is the Gelfand representation of an Einstein 
algebra d .  It is a universal representation of d in the sense that every 
representation of d is equivalent to a subrepresentation of p. It is also a 
natural representation of d in the sense of category theory (Palais, 1981). 

We define a structural ring (over N) of a set M to be a subalgebra cg of 
the algebra ~ t  of X-valued functions on M which separate points in M. A 
ringed space (over N) is a pair (M, ~) ,  where M is any set and cg is a 
structural ring on M. 

Let us suppose that the Gelfand representation of an Einstein algebra 
d separates points in d ^ (this is not a limitation since, if necessary, we can 
always define a suitable equivalence relation which would do the job). Of 
course, ( d  ^ , p ( d ) )  is a ringed space; we call it an Einstein ringed space. 

Let d be an Einstein algebra, M c  d ^ , and let C ~ ( M ) ~  R M denote 
the set of all smooth real functions on M. 1r d --, C~(M) is a subrepresenta- 
tion of the Gelfand representation of d ;  it is called a Geroch representation 
of d (Geroch, 1972). A ringed space (M, C~(M)), called a Geroch ringed 
space, is a smooth manifold satisfying Einstein's field equations. The Geroch 
representation of d is equivalent to the orthodox theory of general relativity 
(but it is global from the very beginning). 

Now, let C c  ~M denote the set of all real functions on the set M (we 
endow M with the weakest topology rc in which functions of C are continu- 
ous) and satisfying the following axioms: (1) C is closed with respect to 
localization, and (2) C is closed with respect to superposition with smooth 
functions on the Euclidean space. 

A function f ,  defined on A c M, is said to be a local C-function if, for 
every peA,  there is a neighborhood B o f p  in the topological space (A, rA), 
where TA is the topology induced in A by re, and a function g~ C such that 
gIB=f[B. The set of all local C-functions is denoted by CA. One obviously 
has C c  CM. If  C= CM, the family C is said to be closed with respect to 
localization. 
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Let C be a family of real functions on M. It is said to be closed with 
respect to superposition with smooth Euclidean funct ions if for any n e N and 
any function coeC~ , fnE C implies co o ( J] . . . .  , fn) e C. 

A family C of real functions on M satisfying conditions (1) and (2) 
above is called a differential structure on M, and it is treated, ex  definitione, 
as the family of smooth functions on M. A pair (M, C), where C is a 
differential structure on M, is called a differential space [in the sense o f  
S ikorski  (1967, 1971, 1972)]. On the strength of condition (2), C is a linear 
algebra, and consequently any differential space (M, C) is also a ringed 
space; it is called a Sikorski  ringed space; correspondingly, we also speak of 
a Sikorski  representation of an Einstein algebra d ,  o-: d ~ C [a detailed 
proof that all Einstein algebra axioms are satisfied can be found in Heller 
et al. (1989); on algebraic foundations of the theory of differential spaces 
see Heller (1991)]. 

Sikorski representations of Einstein algebras correspond to a theory 
which is more general than the usual theory of general relativity. The differ- 
ential space axioms do not demand that it should be locally diffeomorphic 
to N" (if we add this postulate, the differential space changes into a smooth 
manifold). Therefore, Sikorski representations of Einstein algebras cover a 
set of possibilities which are automatically excluded from general relativity. 
Although conditions (i) and (iii) of the Einstein algebra definition are very 
restrictive, Sikorski representations of Einstein algebras are flexible enough 
to cover nonsmooth situations which in general relativity would be consid- 
ered as true spacetime singularities. The Lorentz metric, curvature tensor, 
and Ricci tensor (and consequently Einstein's equations) can be defined on 
a differential space (M, C), even if it is not a manifold, provided there is an 
open covering ~ of M such that on every open set B ~  there exist n smooth 
tangent vector fields forming a vector basis (i.e., a vector basis in the C- 
module of all smooth tangent vector fields on M; "smooth" is here under- 
stood in the sense of the theory of differential spaces: a functionfis smooth 
i f f e C ;  see, for instance, Gruszczak et al., 1988). In such a case one says 
that (M, C) is of constant differential dimension n [on the differential dimen- 
sion of differential spaces see Heller et al. (1991)]. Such a generalized theory 
of general relativity has been considered in Gruszczak et al. (1988, 1989) 
and Heller et al. (1989). In particular, the so-called regular singularities 
[which essentially originate by cutting off some parts of spacetime (Ellis and 
Schmidt, 1977)] are "intrinsic elements" of the theory (Heller and Sasin, 
1991). It turns out, however, that stronger types of singularities (including 
curvature singularities) prevent the corresponding differential space from 
being of constant differential dimension, and consequently cannot be treated 
as "intrinsic elements" of the Einstein algebra. To allow stronger types of 
singularities to become parts of the theory, we should change from Einstein 
algebras to sheaves of Einstein algebras. 
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3. SHEAVES OF EINSTEIN ALGEBRAS 

Let AI be any (nonempty) set equipped with any topology top M. In 
view of future applications to general relativity, we shall additionally assume 
that ~fI= M • @M, and M is open and dense in A~r; @M is the boundary of 
M. Since (for the time being) top M is any topology on Af, the last condition 
is rather a mild limitation of generality. 

By a sheaf of Einstein algebras we understand a sheaf ~ of linear func- 
tion algebras over the topological space (AI, top 217/) such that for any p r M 
and any U= top M, p e U, where top M is the topology on M induced from 
that of M, ~f(U) is an Einstein algebra. 

Since MCtop Af, the above definition implies that ~ (M)  is an Einstein 
algebra. In particular, the sheaf c~M= ~IM is locally free, i.e., the ~(M)-  
module X(~fM) of cross sections of the sheaf ~M has a ~(M)-basis, and the 
Lorentz scalar product g exists in ~ / .  In fact, (M, c ~ )  is a ringed space. 

Following Hochschild (1965), the pair (M, (9), whre M is a topological 
space and (9 a sheaf of function algebras (a functional structure) on M, is 
called the (functional) structured space. If (9 is a sheaf of Einstein algebras, 
(M, (9) is called Einstein structured space. 

Every differential manifold M can be regarded as a structured space 
(M, (9) with the functional structure given by the sheaf (9 of germs of smooth 
real functions on M. If M is a spacetime manifold of general relativity, then 
the corresponding (M, (9) is the Einstein structured space. Evidently, there 
are many Einstein structured spaces which are not smooth manifolds. 

Let (M, C) be a differential space (in the sense of Sikorski), and let us 
consider the topological space (M, re), where rc is the weakest topology on 
M in which functions of C are continuous. The family C(M) of C-functions 
on (M, re) is a sheaf of function algebras such that C(U)=  Cu, for Ue r~, 
Cv being the set of local C-functions on U. Consequently, (M, C(M)) is a 
structured space. If C(U), for all Uero, is an Einstein algebra, then 
(M, C(M)) is the Einstein structured space. 

4. AN EXAMPLE: A SPACETIME WITH SINGULARITY 

The metric 

a s  2 = - d / 2  + dr  2 .-{- r 2 dO 2 + d z  2 

where t, ze ( -oo ,  oo), re(0, oo), 0e<0,2~r-A),  and Ae(0, Dr), first dis- 
covered by Staruszkiewicz (1963) in his 3-dimensional general relativity, can 
be interpreted as describing the external gravitational field of a straight 
cosmic string (see also Vilenkin, 1981; Hiscock, 1985; Gott, 1985). This 
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spacetime was analyzed in terms of  Sikorski's theory of  differential spaces 
by Gruszczak et al. (1991). 

Let us define a 4-dimensional "conic" hypersurface embedded in Ns, 

C(4) = { p ~  ~5:[(_71)2 ..~ (2,2)211/2 = ag4} 

where p = (z ~ z ~, z 2, z 3, z4), a e  ~. The set of  singular points (conic singular- 
ity) of  this hypersurface has the form 

S =  { p ~ 5  : p=(z~  O, O, z 3, 0), z ~ z 3 ~ }  

Let Co be any set of  real functions on a set M. There exists the smallest 
differential structure C (in the sense of  Sikorski) on M such that Co c C and 
rco = rc. In such a case C is said to be generated by Co, and Co is called the 
set o f  generators o f  C; one writes C = G e n  Co. (M, C) is said to befinitely 
generated if the set of  generators is finite. It can be shown that a function f 
belongs to C if and only if, for every point p ~ M, there exist a neighborhood 
U of  p, functions ~b l , . . . ,  O, eC0, and a real function co on R" such that 

f l U = c o o  (49 , , . . . ,  ~b,)l U. 
Now, we shall describe C (4) as a finitely generated d-space. Let 

/~:= ~2 • (0, oo) x (0, 2re) be a "parameter space," and a i : / ~  ~, i=  
0, 1 , . . . ,  4, real functions parametrizing the hypersurface C (4) in the follow- 
ing way: 

z ~ ao(q) = t 

z I = al(q) = p cos ~b 

z 2 = az(q) = p sin ~b 

z 3 = a3(q) = z 

z 4 = a4(q) = ap 

where q= ( t, z, p, qb )ef t ,  r = p(  a2 + 1) l/z, and 0 = ~b (a2 + 1) -1/2. 
Let ~ be the differential structure on P generated by {ao, al . . . .  , a4}, 

~ = G e n { a o ,  a~ . . . . .  a4}. The differential space (P, ~ )  is not Hausdorff, 
since functions ai, i=  0, 1 . . . . .  4, do not distinguish the points (t, z, p, 0) 
and (t, z, p, 2zr). To cure this situation, let us define the Hausdorff  equiva- 
lence relation p~/in the following way: for any q~, qz~P, ql PH q2 if and only 
if ai(ql)=ai(q2), i=0 ,  1 . . . . .  4. Let N : = ~ / p n  and P:=f f /p~ .  We obtain 
the Hausdorff  differential space (P, ~) .  It can be easily seen that ~ =  
Gen{do, fil . . . .  , f i4} ,  where 

a,([ p]):= a,(p) 

for p~/~, [p]~P, i=0 ,  1 . . . .  ,4. 
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The differential space (P, ~ )  models the spacetime of a cosmic string 
with singularity. In fact, (P, N) is diffeomorphic to the differential space 
(C (4), (~5)cC,0 which is a differential subspace of (Rs, 85), where ~5 denotes 
the natural differential structure on Rs. Indeed, the mapping 

/~:= (a0, c21 . . . .  , c~4): P ~ R  5 

is a diffeomorphism of (P, ~ )  onto the image (/~(P), (g~)~(~,)), and by direct 
computation one can check that F(P) = C (4) [for details see Gruszczak et al. 
(1991)]. 

Points of the form [(t, z, 0, q~ )]~P, where t, z ~ ,  ~b~ (0, 2to), represent 
the singularity since F[(t, z, 0, q~ )] eS. Let us denote the set of all singular 
points by 3P, and let P = P - O P .  Now, /~1.~ is a diffeomorphism of the 
differential subspace (/3, N~) onto (C (4) - S ,  (~5)c(4~_s), which is the space- 
time manifold of the cosmic string. 

is a sheaf of linear function algebras on the topological space (P, re), 
where P=/3 u 0P, and, as can be easily seen, P is open and dense in P. 
5~r(~(/3)) is a locally free ~(/3)-module (and even a Lorentz module), and 
Ric = 0 is satisfied on (P, ~ ) .  Consequently, (P, ~ )  is an Einstein structured 
space. 

The spacetime considered here of a cosmic string together with its quasi- 
regular singularity has been recently investigated with the help of standard 
methods by Vickers (1985, 1987, 1990). 

5. DISCUSSION 

Einstein algebras have various functional representations (subrepresen- 
tations of the Gelfand representation), one of which, the Geroch representa- 
tion, is equivalent to the global version of standard general relativity. 

It turns out that Einstein algebras can be naturally organized into 
sheaves of Einstein algebras. The only deviation form full generality in our 
construction is the assumption that the sheaf is defined on a topological 
space ~r = M w aM such that M is open and dense in 3~r. Taking into account 
the fact that the topology in ~r is not a priori specified, this assumption is 
not very restrictive, but it allows one to consider spacetime singularities as 
the topological boundary OM of spacetime M. 

Notice, however, that neither spacetime itself nor its boundary are prim- 
itive elements of the theory. The main advantage of the purely algebraic 
treatment is that no spacetime events appear in it from the very beginning. 
There are elements of abstract algebras that should be considered as the 
primary "objects" of the theory. Only after changing to the Gelfand repre- 
sentation of the given Einstein algebra d (or to some of its subrepresenta- 
tions) do these elements become real-valued functions on the set Spec d of 
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strictly maximal ideals of d (or on some of its subsets) which assume the 
role of spacetime "events." In Geroch representation the set of such events 
is a smooth manifold (spacetime in the usual sense) ; in other representations 
(for instance, in the Sikorski representation) some "events" can be singular. 

The fact that we are dealing with functional spaces (ringed spaces or 
structured spaces) makes the theory of Einstein algebras more similar to the 
formalism of quantum theories. The resemblance goes further. As is well 
known, standard quantum mechanics can be elegantly given the abstract 
structure of C*-algebras. A C*-algebra is a Banach algebra with the opera- 
tion called involution (and denoted by *) which satisfies conditions analog- 
ous to those of the usual conjugation operation. On the strength of the 
Gelfand-Najmark theorem, every commutative C*-algebra A is isomorphic 
with the algebra C(M) of continuous complex functions on a compact set 
M. The isomorphism A-~ C(M) defines the Gelfand representation of A, 
and M is the set of maximal ideals of A (see, for instance, Maurin, 1980, 
pp. 673-678). The analogy with Einstein algebras and their Gelfand repre- 
sentation is striking; it certainly deserves further investigation. 

Observational possibilities connected with Einstein algebras were briefly 
discussed by Geroch (1972). An essential difference between observational 
aspects of Einstein algebras (and even more of sheaves of Einstein algebras) 
and those of standard general relativity consists in the fact that in the 
Einstein algebras they should be computed in terms of global tensor fields 
rather than locally as is usually done in the majority of existing theories of 
gravity. Such computations, although tedious, are perfectly possible (Sikor- 
ski, 1972, Chapter 5). As we have seen, there exist representations of Einstein 
algebras which are more general than general relativity; in such circum- 
stances new observational effects should not be a surprise. In particular, 
these versions of new theories which incorporate singularities into their own 
structures could lead to new observational effects for algebras (or sheaves 
of algebras) modeling physical situations in the presence of singularities (for 
instance, black holes or early stages of the universe's evolution). 
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